Homoclinic orbits of a class of second-order difference equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homoclinic Orbits of Second-order Nonlinear Difference Equations

We establish existence criteria for homoclinic orbits of secondorder nonlinear difference equations by using the critical point theory in combination with periodic approximations.

متن کامل

Homoclinic orbits for second order self-adjoint difference equations

In this paper we discuss how to use variational methods to study the existence of nontrivial homoclinic orbits of the following nonlinear difference equations Δ [ p(t)Δu(t − 1)]+ q(t)u(t)= f (t, u(t)), t ∈Z, without any periodicity assumptions on p(t), q(t) and f , providing that f (t, x) grows superlinearly both at origin and at infinity or is an odd function with respect to x ∈R, and satisfie...

متن کامل

Existence of Homoclinic Orbits for a Class of Nonlinear Functional Difference Equations

By using critical point theory, we prove the existence of a nontrivial homoclinic orbit for a class of nonlinear functional difference equations. Our conditions on the nonlinear term do not need to satisfy the well-known global Ambrosetti-Rabinowitz superquadratic condition.

متن کامل

A Class of Nonlinear Second Order Difference Equations from Macroeconomics

where the constant A,, = Co + I0 + Go represents the sum of the minimum consumption, the “autonomous” investment and the fixed government spending in period n, and Y, is the output--GNP or national income-in period n. The net investment amount in the same period is given as Z, = ac( Y,I Y,-,). The constant c E (0, 1) represents Keynes ’ “marginal propensity to consume” or the MPC, while the coe...

متن کامل

INFINITELY MANY HOMOCLINIC ORBITS OF SECOND-ORDER p-LAPLACIAN SYSTEMS

In this paper, we give several new sufficient conditions for the existence of infinitely many homoclinic orbits of the second-order ordinary p-Laplacian system d dt (|u̇(t)|p−2u̇(t)) − a(t)|u(t)|p−2u(t) +∇W (t, u(t)) = 0, where p > 1, t ∈ R, u ∈ R , a ∈ C(R,R) and W ∈ C(R × R ,R) are no periodic in t, which greatly improve the known results due to Rabinowitz and Willem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2012

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2012.07.016